If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+66k=21
We move all terms to the left:
9k^2+66k-(21)=0
a = 9; b = 66; c = -21;
Δ = b2-4ac
Δ = 662-4·9·(-21)
Δ = 5112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5112}=\sqrt{36*142}=\sqrt{36}*\sqrt{142}=6\sqrt{142}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-6\sqrt{142}}{2*9}=\frac{-66-6\sqrt{142}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+6\sqrt{142}}{2*9}=\frac{-66+6\sqrt{142}}{18} $
| x+2=5+x+7-2x | | 16=-3x-4+8+5x | | -4K-8k=-12 | | -3b=-3.375 | | 8x/3-x/3=7 | | -n-3(1-7n)=97 | | 5x-4=5+x+7-2x | | 7x+x+9=24 | | 3(5-7x)=99 | | -5^3=-3(3z+3)+3z | | 2(x-4)/3=-3 | | x+2÷-1=3 | | −4x+5=−4x−4 | | 3x+21=70+10x | | -16x-42=46 | | x+2+-1=3 | | 54=-9c | | Y=416x+29 | | 15y+2+10=61 | | -12+m=6 | | 3(x-4)=6^2 | | L+(l-5)=94 | | 6(10)^(x)+(10)^(x-1)=2 | | 6y+27=12+y | | Y=20x+39 | | 2x/9+4=2 | | 28+y=7 | | X+(2x+12)=$174.00 | | -13y+27=-y-45 | | 11(2x+6)+2(1-12x)=4x+11x | | 7x-2(-2x+21)=90 | | x(4-1)+9=27 |